Pregramming fior
Optimal MPI Perfermance on
LC’s Linux / Quadrics Clusters

Adam Meody.
moedy20@linl.geyV

Development Envirenment Group

May: 23, 2005

UCRL-PRES-212679

This work was performed under the auspices of the U.S. Department of Energy by University
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Outline

OVeRview
n S\ystemrNetwoerksArchitectire
n e @uadrcsHRterconnECt

Programming for Optimailt VPl
Tuning the Runtime: ERvirenment

Wirap-up

System Network Architecture

Fhunder

x 4 |tanium2's; per node

a PCIEXE 64-bit @ 133 Mz — 1066 MB/Sec
s QsNet''s 2.5 usec, 900 MB/sec

VICR

m 2 XEOn'S Per node

a PCI: 64-bit @ 66 MHz — 533 VIB/sec
m OQsNet: 4.7 usec, 320 MB/sec

The Quadrics Interconnect

Elite (the switch)
s Fat-tree architecture
x Fulll duplex links

- ?(;)&Jtriﬁz—based, Wormiole [:] [j

s Hardware: stpport fio)
PACket Preaecasts, Q Q Q Q
remote tests, and relianle
transmission

The Quadrics Interconnect

Habls

L V

Outpu4

Thread &
Command

Elan (the: NIC)

1 Remote DIVIA sUpport
OS-hypass, Zero-copy.

Local MMU & TLB Processors

s Communication
Ofiflead

ProgrammanlerRISC
threaded pProcessor

64 VB local SDRAM 3

The Quadrics Interconnect

LOW. |atency,

HIgh lsandwiditi

=UliFduplex

Communication effiead

IHardwale suppert for Proadcast

IHardwalre suppert for relianle: transmission

Outline

@verview

Programming for Optimailt VPl
s DESIGIRFENRINmIZE CommuRcauoR
n \Vanyrsaialismessages Kl PEHeHIanGce

s ligke aavanicee Ol el 0adIfg; ZEIG-CopY, ©OSE
0)V0)elsis

Tuning the Runtime: Envirenment
Wirap-Up

Programming fiex Optimal VP

[Design; te: minimize communication

x V2 deita o e PIOCESSISE aS tONmIANMIZE IS IUIMPER O
coMmmMURICalBRNP eSS HIlSE NIESSAUE SiZENSECORE

AVEICNGIehAIFCEMIMURICANGRICPERAGHS, EIVIEE
BIOCESSESHRLE SUI=CoMMURICALeISWIHERE! POSSINIE

s CEISICEIRVIRENV PIVAGRERIVIE

aAIEYSTUSErCElIECHIVES, PUiT KNGV TRE g AR SCatiels
andrallitezll are herenuy nenEsealznle

Many: small messages kill"performance

Trake full'advantage: of offieading,, ZEre-copy,
OS-hypass

Data Mapping

Eer example, say: eur proklems requires
a matiix transpese:. WWihat IS the Best
Way: (Wit VP11 ter assign the: matiix to
fOUIF PrOCESSOIS?

(o

Data Mapping

I general;, It's; better te sendia fiew. Big MEessages
rather than a ot efi littie: 6rRes.

s Reduce numer of messages first, message size second

Requires

MPEITAllteall()
s P2 messages
 |.ess scalable

Reguires
MPI—Send/Recvi()
m P messages

» Moere scalable

Global communication and
Sub-communicators

If-possible, avold design chelces that require Precesses
10) SYNCArenIZe or excliange data with all' ether pProcesses
(e.q., collectives, on MPI_CONM_ WORILD)

Instead, faver algerthms: that divide pProcesses; Into
SUBSEets via sub-communicaters

s |t IS ek to overlap communicaters and assign a pProcess ter more
than ene

Create sub-communicators early. on andl reuse them

a Several glehal cellectives are called to create a cemmunicator,
SO Creating one: terdo Just a few operations: hefere deallocating It
may: be self-defeating

Hylbrd MPI / OpenviP
Advantages (Wit MEI-enly)

Shaling data PEWWEEN ProcESsSors 0/ same nede
x VIPI'— data copied from: 0ne adaress space: ter anether
[Latency: micresecs; Banadwidth: memery/-copy Speed

s OpenMP'= shared address space, threads synchronize
LLatency: namnosecs; Bandwidth: imifinite (data doesnit meve)

Shaling data PEtWEEn Processors: en difif. nNedes

x MPI-enly: multiple: MEIf precs /- node, one: netweork link
MPI processes recelve fraction: off netwoerk bandwidth

s Hybrid: ene MPI proc / noede, one network link
MPI proecesses receive full netwoerk bandwidth

Eewer processes, higger message sizes — generally good fior
scalaliliby

Hylrd MPI / OpenViP
Pisadyvantages

OpenRMPE may: e difficult terimplement
depending; onkyoulr algerthm

OpenMPE maintenance

s need thread-safe libranes,, including 3@ party
s must be bullt with' thread-safe: compllers

OpenMP periormance
s depends on suppert and quality: of compiler

n thread-precesser affinity
= Overhead may outwelgh benefits

MPI Collectives

MPEI venders, tune collectives) eptimally. for Underying
ardware
s [everage thelr werk; use interconnect to Its fullest

Common: collectives; to be aware of:
= Barrier

= Broadcast

s Reduce, Allreduce

a Gatiher, Allgather, Gatherv, Allgatheny
m Scatter, Scatterv

a Allteall; Alltoallv

[Fyeue unfamiliar with these, take a fiew minutes;anad
read apout them i the MPI standard — yeu may. fine
them useful

Collective Scalability: on Quadrics

EGI P PrecEesses and message size Vi

u Barner, Breadecast O M) = WM

s Reduce, Allreduce O(P; M) = leg(P)ZV

a Gather, Allgather, Scatterr: O(P;M) — PV

x Allteall O(P,M) —~ P*M +
contention

Quadrics hardware provides superiar scalability of
Barrier, Breadcast, Reduce, Allreduce

Gather, Allgather, Scatter; andrAlltoall are
Innerently’ nen-scalable

a these will' bite' you I large-scale glokhal eperations

Microseconds

Times for 8-byte collectives

2 4 8 16 32 64 128 256 512 980
Processes (one per node)

On Thunder,
Barrier and Broadcast in nearly constant time
Reduce / Allreduce on 980 processes takes only 5-6 times longer than 2 procs.

Microseconds

Times for 8-byte collectives
100000

10000
1000
100x

100

10

2 4 8 16 32 64 128 256 512 980
Processes (one per node)

But,
Gathers and Alltoall are 100 times slower
(inherent limits in communication pattern, not interconnect or implementation)

Programming fiex Optimal VP

Design ter minimize: communication

Many:sniall messages Kill performance
m PECKAtNERMNRLGN EGENIESSEEES
n EllmmetestemViercoll EctiVes

Fake advantage off effieading, ZEre-copy,
OS-Bypass

MB/sec

Effective Bandwidth

1000
900
800
700
600
500
400
300
200
100

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Bytes
E.g., say we have four chunks of 1024-byte data to send to the same destination
Need to push a total of 4K of data through network
Packing into one 4K message delivers twice the bandwidth of four 1K messages
Same amount of data @ 2x the bandwidth - 1/2 the time

Microseconds

Message Transfer Time

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K
Bytes
The effect of packing is more extreme for very small messages.

On Thunder, 4096 bytes can be sent between nodes in only 4x the time it takes
to send just 1.

Packing Small-Messages

Packing| cemes Wit a cost
x Viemeny coples required te: pack and Unpack: the' data

Packing pays) eiii Se: leng as; the mMenory. CopIes
cost less than the savings frem higher
PancwWIdin

m SWItCHI poInt GCCUrS Just befere the bandwidih curve
levels out

a |fi your message sizes; are well helow this peint;,
Investigate packing

Example: Packing Small Viessages

User needed 2D transpoese onl 3D data Set
a1 Reguires MPI1_Allteall()

Ongimaltlmplementation

s [[l2NsSPese eachiplane in z-dim;, ene at at time

n Eixed preblemsize scaled well te tens of precessors,
suffered severe bottle neck at hundreds

Example: Packing Small Viessages

Wiy did tie scaling fall Eifective Bandich
0]

s When scaling a fixed-size
problem; toe; P processes,
the message size In
MPI_Allteall() scales as
1/P=

Performance guickly: fialls
offf asi the message size

PEgInNS slidingl down the -
bandwidth curve 1 4 16 &4 2% 1K 4K 16K 64K 256K 1M 4M

Bytes

Example: Packing Smallf Viessages

Medified limplementation

s Pack all Z-dimidate i enermessage, Perornm
singlerMPIT Allteall(); Unpack z-dimf date

s Used VIPIFDenved Datatypes:so MPI did all
packing / unpacking for us

s Siince there were 100-200 planes in the z-dim,
thlsiIncreased message size by 100-200 times

x Performance returmed as We shot back up the
pPandwidtia; curnve

CPU time (sec) per processor

Per Processor Time for Matrix Transpose
vs. Number of Processors

——— MCR-1024x512x98 2DxMNz
——— MCR-1024x512x96 2D

A NoRoeaaizdzE D Packed Transpose (aka 3D)
——l— MCR-1024x2512x192 20Nz
— & MCR-1024x512x192 3D Ran slower at small scale,

- where packing /

. unpacking introduce

: overhead but no savings

| Ran 10-20x faster at large
| scale
: Achieved 2x speedup in
application

10" | 101 | I””1IC'2 | 103

Example 2: Packing Small
VIESSEIJES

User needed 1o write distriluted arrays in outpult step
s Reguires gather te reot fior fermatting

Onginal Implementation

a FOr eachvarialdle, fior each process, oot sends “ge anead”
messager thenl recelves data via MPIE Send/Recv()

s Fixed problem size' scaled well ter hundreds of processes;
sufferedi severe bottleneck at thousands

Example 2: Packing Small
VIESSEIJES

Wiy did therscaling fall ofif?
s When scaling a fixed-size prohlem to P precesses, the
Message size seales as 1/P.

s Performance guickly: fialls effi as the message: size hegins
sliding dewn| the: bandwidth curve

Medified limplementation
Pack pieces of distributed data arnrays, Inte: a single message,
gather te reot, then unpack
Since: there were —70i suchi varianles; this Increased message
size diramatically,
Performance fior gather imereased by 10-20x

Achieved 2x speedup In application

Eliminating Small Viessages

Collectives eliminate: small messages; by packing
ACIr@SS| PrECESS houndanes

u [Data from Precesses on the same node can ke
combined Into a nede-wide message In sharead
Memorny.

s ree-based algortnms, combine messages from
multiple: children Into; a single message for parent

s IHardware-hased broadcast simultaneously delivers a
single message te multiple: precesses

Loek fier places to sukstittte collectives in place
of “for* loops

a Especially relevant to legacy’ codes originally designed
for a smalll number of processes

Example: Eliminating Small
VIESSEIJES

User needed to compute glonal sum eff some distripuied
data

Onrginal Implementation

s For each proecess, root receives data via MPRI-Send/Recv() and
adds terrunning sum

s Became severe bottleneck at thousands of processes

it (myid == 0)
sum = my_ data
for 1 =1 to (P-1)
MP1_Recv(data from 1)
sum = data + sum
else
MPI_Send(my_data to 0O)

Example: Eliminating Small
VIESSEIJES

Modified Implementation

s Replaced manual reduction with calli ter MPI. Reduce()
s Performance for reductions increased by 100-200x

a Achieved 3x speedup inapplication

MP1_Reduce(my_data, sum, MPI_SUM, root=0)

Speedup on Thunder:
Manual Reduction (estimate) vs
MPI_Reduce (measured)

8 16 32 64 128 256 512
Processes (one per node)

Programming fiex Optimal VP

Designi te: mininize: communication
Many:small messages Kill perfermance

Fake advantage: ofi offleading, ZEro-copy,
©S-BypPass

m (USENSERE/AECVAD USErColIECUVES=INTCAI|
AsSUIMENESKS; TiFEEIRg e A PReCESSE)

n Prepost recevesiieraveld UnEXPECLIET
MESSaEENUHERRD

n JOUCIHI SERT and receive PUIiers e aveid page
fiaults

Programming for Optimal MPI
SUmmeary.

Design to: minimize: communication
s Viaprdata te Precessors s as o minimize communication
s Avoidiglebalieperations, Use: sukh-communicators
Censider hyhrid MPI/ ©penMP
Always use collectives, but know: that gather/scatter/alltoalll are

Inherently nen-scalanle

Many: small messages Kill perfermance
s Pack them' intoe large messages
n Eliminate them via coellectives

rake full'advantage of offieading, Zero-copy, OS-bypass

s Use Isend/lrecv(), use collectives — NIC willl assume tasks,
freeing the main precessor

s Pre-post receives to avold unexpected message buffering
s [ouch send and receive bufifers to avoid page faults

Outline

OVeRvIew.
Programming for OptimaltviPl

Tuning the Runtinme: Envirenment
s WEBKING 2l geHUIImRSWILCHINE GRS

n BIGCKAVSE CY/CIICHRIOCESS AIStilubien
5 CENNGUGUSIIBEES

Wirap-up

Tweaking Algoerthn Switch Points
Polnt-te-point VMessage Proteco)s

Internode

LIBELAN_TPORT_ SMALLMSG LIBELAN_TPORT_ BIGMSG

inline l asynchronous l synchronous

128-288 Message Size 32k-64k

asynchronous T synchronous

LIBELAN_SHM BIGMSG
LIBELAN TPORT _SHM_ ENABLE: Turn on/off shared-memory messages

Intranode

Tweaking Algoerthn Switch Points

“Best” values for switeh points Vary with
application and- preblen size

s | you send lots of messages sized near tnese default
poundaries, experiment with: tweaking the; switeh
POINtS

x |ff the majenty. of yeur messages are fal away, the
defaults are prenanly: Just fine

One User ehtained 2x speedup: inl key eperation
Y/ fiGKCING| SYNCAreNGUS: pProtocol

Later versions of therVIPINiran/ will likely,
support additienal switch point Vananles

Block vs. Cyclic Distribution

Sruni SUpPpPErts tWoi precesses-to-nede
MappINGSs threugh: -k option

= - bleck™ (default)

= “-m cyclic”

Block Cycli

Ny

No

Block vs. Cyclic Distribution

Dependingl e New. the Processes; I your
application communicate,; one mapping: nmay. ke
Petter than the: ether

s Best 1o group: processes that fireguently, talk to one
anether close te each other, I.e., on the same node

x| a precessihas multiple sets ofi communication
partners, group the set with the coestliest
communication

Dificult tor generalize, give boeth Settings a try.

Contiguous Nedes

IHardware-lhased broadcast Used When sending te
PrOCESSES residing on nedes; physically: contiguous Wit
SWiteh

s thunder[40-60] can he done in one Broadcast

s thunder|[40,42-61] reguires two — twice as; slow.

s thunder|40,42,44-62] requires three ...

Applications Whichi spend muchref thelr time: i glehal
calls 1o Barrier, Broadcast, Reduce, or Allieduce, may
notice a difference

s For these apps, aim to rn on largest set ofi contiguous Nedes
Wwhenyou can (e.g., during a DAT)

s Can exclude fragmented ranges via =X’ skun option

For apps not dominated by these conditions, fragmented
ranges have little impact — den't Werry: about them

Outline

OVenriew

Programming for OptimaltviPl
Tuning the Runtinme: Envirenment
Wiap-Up

el — P EPraiilirle) Eleirziny

m AGKIGWIEEGEMERLS

n Resources / Questions

mpIP = MPI Profiling Linrany

ARSWers guestions like:

m [Hew much time! Isimy: app’ spending 1n: MP12

x WhichrMPI callf sites: are the hottienecks?

Easy o Use

a Just replace “srun® with “srun-mpip*

s No need to rebuilad o even relink: (I most cases)
EGI moere 1nie

x Wwwzlinlt gev/ice/ic/DEG/mpip=linithtmil (CLNLE Users)

a W linltgev/CASC/mpip: (General Users)
a Developed and maintained by Chrs Chambreau

Acknowledgements

Users and Codes
a Antonine Ferrante
DNSTBL — Direct Numerical Simulation ofi & lurbulent Beundary Layer
John Traylor
MM5*= Climate Viedeling
Aliseni Kulheta
Eduarder Bringa
MDCASK — NMelecular Dynamics
Jean-luc Fattenert
MGmoll = Multi-grid Melecular Dynamics
Kathleen MeCandless, Mike Zika, Mike: Collette
Quadrics

= Duncan Roweth and David Addisen

Resources / Questions

LC's MPI wel page
x Wwwzlinltgev/computing/mpl

s ks ter MPI reseurces, manuals, general inio
Perfenmance data
MPI environment varialkles
This presentation

Linux: MPI Suppert
x Adam Moeedy moeody20@linl:geV
a Shella Faulkner faulkners@iinl:gey

Problems
s [LC Hotline

Extra
Slides

Effective Bandwidth

2000
1800
1600
1400

o 1200
% 1000
= 300
600
400
200

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Bytes

